161 research outputs found

    Can the effects of anthropogenic pressures and environmental variability on nekton fauna be detected in fishery data? Insights from the monitoring of the artisanal fishery within the Venice lagoon

    Get PDF
    Nekton communities in transitional ecosystems are naturally adapted to stressful conditions associated with high environmental variability. Human activities in these systems are likely to determine additional stress with a possible effect on fish fauna, hence on fisheries. In order to test the relative importance of natural and anthropogenic factors in determining changes in nekton community, catches (incl. bycatch) from artisanal fisheries (fyke nets) were monitored seasonally in different areas of the Venice lagoon (Italy) between 2001 and 2013. Changes in nekton community composition and in the biomass of target and non-target species/groups were analysed, and the results were related to temporal factors, environmental characteristics and to the variability in anthropogenic pressures. Statistical tests were carried out using a model-based analysis of both univariate and multivariate data. Results highlighted that temporal factors and environmental conditions (i.e. the main chemico-physical descriptors) are more relevant than anthropogenic pressures in explaining spatial and temporal changes in the lagoon nekton assemblage, but that several characteristics of the assemblage, in particular the biomass of some particular categories and of the whole assemblage, are sensitive to human impacts. A particularly negligible effect seemed to be associated with fishing effort, thus suggesting that the monitoring of the local artisanal fishery is suitable also to provide useful information on the evaluation of the status of nekton assemblage

    Simulations and interpretations of cumulative trophic theory

    Get PDF
    Examining marine ecosystems in a distinct way can produce new ecological, theoretical and applied insights. The common “S” and “hockey stick” -shaped curves, which result from examining the cumulative biomass and trophic level and the cumulative production and cumulative biomass curves of marine ecosystems, have strong potential to elucidate the mechanisms of marine food webs. These curves are based on the cumulative trophic theory, which can be summarized as the integration of biomass and production across trophic level that results from the relatively simple trophic transfer equation. Here we test the behavior of this theory via modeled simulations of the transfer equation under a variety of common mechanisms that can influence marine ecosystems. The simulated scenarios we present and evaluate here explore bottom-up driven changes (production, growth), internal dynamics (transfer efficiency) or top-down driven changes (mortality, selectivity), as well as multi-mechanism scenarios (overfishing and eutrophication) that are commonly experienced in marine ecosystems. We explore these scenarios at high, medium or low levels of change for each feature to ascertain how they can result in major changes to the realized trophodynamics of a marine ecosystem. Our results lend credence to the generality of the cumulative trophic theory by predicting the empirically observed “S” and “hockey stick” -shaped curves under a wide range of possible mechanisms. Given that common, repeatable and predictable dynamics is a key hallmark of increasingly robust theories, the application of cumulative trophic theory in managing marine ecosystems enables more repeatable and predictable responses across a wide range of conditions

    Mosaic of submerged habitats in the Venice lagoon shows signs of marinization

    Get PDF
    The relationships between habitat patterns and ecosystem functioning have been widely explored in terrestrial ecosystems, but less in marine and coastal ecosystems, calling for further research in this direction. This work focuses on the mosaic of submerged habitats in the Venice lagoon, Italy. It aims to describe the habitats’ spatial patterns at multiple spatial scales, and to explore their linkages with the ecological status defined according to the EU Water Framework Directive (WFD, 2000/60/EC). The submerged habitats’ mosaic has been analysed by calculating a set of seascape metrics at different spatial scales. These metrics have been linked with the biological quality elements (BQEs) that are monitored in the lagoon in compliance to the WFD. The results show that the habitats’ spatial patterns differ between the areas of the lagoon with marine-like features and the areas which still retain more lagoon characteristics. The similarity between the pattern found in the whole lagoon and those found in marine-like areas suggests a general loss of lagoon characteristics at the lagoon scale. Regarding the ecological status, every BQE seems to be associated with a different habitat configuration at the water body scale. This does not facilitate the joint improvement of the BQEs, as required by the Directive. If we cannot achieve that, at some point we will probably have to choose what to prioritize. On a broader perspective, this calls for a reflection on what lagoon we want for the future, a vision that should be shared and account for the lagoon’s complexity, current trends and challenges

    Linking food web functioning and habitat diversity for an ecosystem based management: A Mediterranean lagoon case-study

    Get PDF
    We propose a modelling approach relating the functioning of a transitional ecosystem with the spatial extension of its habitats. A test case is presented for the lagoon of Venice, discussing the results in the context of the application of current EU directives. The effects on food web functioning due to changes related to manageable and unmanageable drivers were investigated. The modelling procedure involved the use of steady-state food web models and network analysis, respectively applied to estimate the fluxes of energy associated with trophic interactions, and to compute indices of food web functioning. On the long term (hundred years) temporal scale, the model indicated that the expected loss of salt marshes will produce further changes at the system level, with a lagoon showing a decrease in the energy processing efficiency. On the short term scale, simulation results indicated that fishery management accompanied by seagrass restoration measures would produce a slight transition towards a more healthy system, with higher energy cycling, and maintaining a good balance between processing efficiency and resilience. Scenarios presented suggest that the effectiveness of short term management strategies can be better evaluated when contextualized in the long term trends of evolution of a system. We also remark the need for further studying the relationship between habitat diversity and indicators of food web functioning

    Historical changes in the structure and functioning of the benthic community in the lagoon of Venice.

    Get PDF
    One of the main challenges in environmental management is how to manage the dynamics of natural environments. In this context, having information about historical changes of the structure of the biological communities could represent a useful tool to improve management strategies, contributing to refine the policy objectives, since it gives reference states with which to compare the present. The Venice lagoon represents an interesting case study, since it is a highly dynamic, but sensitive, environment which requires the adoption of prudent management. In its recent history the lagoon ecosystem has been exposed to different kinds of disturbance, from the discharge of pollutants and nutrients, to the invasion of alien species and the exploitation of its biological resources by using highly impacting fishing gears. The analysis of available data about the macro-benthic community, from 1935 to 2004, allows the description of changes of the community structure over almost 70 years, showing a sharp decrease in its diversity. In order to obtain information about its functioning, it is necessary to know how these changes have affected processes at the community and system level. In shallow water ecosystems, as the control is mainly due to the benthic compartment, variations in the structure of the benthic community can induce modifications in processes at different hierarchical levels. The trophic structure analysis has revealed major changes during the period; from a well-assorted structure in 1935, to an herbivoreedetritivore dominated one in the 1990s, and finally to a filter feeder dominated structure during the last decade. This has produced variations in the secondary production and it has induced modifications in the type of the ecosystem control. These changes are discussed in the light of the dynamics of the main driving forces

    Freshening rather than warming drives trematode transmission from periwinkles to mussels

    Get PDF
    In the Western Baltic Sea, climate change is happening at much faster rate than in most other seas and organisms are additionally exposed to a steep and variable salinity gradient. Climate change has previously been shown to affect parasite transmission in other marine ecosystems, yet little is known about potential effects of warming and desalination on parasite–host interactions. In laboratory experiments, we determined the combined effects of projected seawater warming and freshening on the emergence, activity, survival, and infectivity of cercariae (free-swimming infectious stage) of the trematode Himasthla elongata (Mehlis 1831), shed from its first intermediate host, the periwinkle Littorina littorea (Linnaeus 1758), in the Baltic Sea. We also assessed the susceptibility of the second intermediate host, the mussel Mytilus edulis Linnaeus, 1758, to cercarial infections. Generally, salinity was the main driver, particularly of cercarial activity, infectivity, and mussel susceptibility to infection. At the lowest salinity (13), cercariae were 50% less active compared to the highest salinity (19). Infection success and host susceptibility followed a similar pattern, with 47% and 43% less metacercariae (encysted stage) present at salinity 13 than at salinity 19, respectively. In contrast, effects of simulated warming were found only for cercarial survival, with cercarial longevity being higher at 19 than at 23 Â°C. No significant interactions between temperature and salinity were found. In contrast to the literature, the results suggest that a climate change-driven freshening (partly also warming) may lead to a general decline of marine trematodes, with possible beneficial effects for the involved hosts

    Multiple aspect trajectories: A case study on fishing vessels in the northern adriatic sea

    Get PDF
    In this paper we build, implement and analyze a spatio-temporal database describing the fishing activities in the Northern Adriatic Sea over four years. The database results from the fusion of two complementary data sources: trajectories from fishing vessels (obtained from terrestrial Automatic Identification System, or AIS, data feed) and the corresponding fish catch reports (i.e., the quantity and type of fish caught). We present all the phases of the dataset creation, starting from the raw data and proceeding through data exploration, data cleaning, trajectory reconstruction and semantic enrichment. Moreover, we formalise and compare different techniques to distribute the fish caught by the fishing vessels along their trajectories. We implement the database with MobilityDB, an open source geospatial trajectory data management and analysis platform. Subsequently, guided by our ecological experts, we perform some analyses on the resulting spatio-temporal database, with the goal of mapping the fishing activities on some key species, highlighting all the interesting information and inferring new knowledge that will be useful for fishery management

    Ecosystem functioning and ecological status in the Venice lagoon, which relationships?

    Get PDF
    The implementation of management measures for improving the ecological status within an Ecosystem Based Management approach represents one the of the main challenges in coastal and transitional water environments. In general terms, ecological status and ecosystem functioning are expected to be positively associated, being good ecological processes a sort of prerequisite for the ecosystem health, but often relationships between ecosystem functioning indicators and the metrics used to define ecological status resulted to be rather puzzling. Moreover, the Biological Quality Elements (BQEs) do not show a consistent response to the changes in the ecosystem. This situation does not allow to recognize where interventions are really needed, hindering the definition of effective management strategies. In the present paper, a spatially explicit food web model of the Venice lagoon (with the resolution of 300 m) is used to simulate changes in the ecological status and related them to different management scenarios. Functional changes in the food web were investigated by comparing values of a set of 12 indicators derived by the ecological network analysis. In general, results highlighted on one hand the need for more discussion about the implementation of the WFD, at least in complex and spatially heterogeneous transitional waters environments, as the Venice lagoon; on the other, results remark the opportunity to support the BQEs monitoring with an ecological modelling approach. These models are certainly not the panacea for addressing questions about the environmental management, as they have inherent uncertainties (on parameters, structure, processes etc.); however, they can prove useful for selecting among different policy choices, since they offer the opportunity to simulate the mean effects, preliminarily verifying the efficacy of the proposed interventions

    From multiple aspect trajectories to predictive analysis: a case study on fishing vessels in the Northern Adriatic sea

    Get PDF
    In this paper we model spatio-temporal data describing the fishing activities in the Northern Adriatic Sea over four years. We build, implement and analyze a database based on the fusion of two complementary data sources: trajectories from fishing vessels (obtained from terrestrial Automatic Identification System, or AIS, data feed) and fish catch reports (i.e., the quantity and type of fish caught) of the main fishing market of the area. We present all the phases of the database creation, starting from the raw data and proceeding through data exploration, data cleaning, trajectory reconstruction and semantic enrichment. We implement the database by using MobilityDB, an open source geospatial trajectory data management and analysis platform. Subsequently, we perform various analyses on the resulting spatio-temporal database, with the goal of mapping the fishing activities on some key species, highlighting all the interesting information and inferring new knowledge that will be useful for fishery management. Furthermore, we investigate the use of machine learning methods for predicting the Catch Per Unit Effort (CPUE), an indicator of the fishing resources exploitation in order to drive specific policy design. A variety of prediction methods, taking as input the data in the database and environmental factors such as sea temperature, waves height and Clorophill-a, are put at work in order to assess their prediction ability in this field. To the best of our knowledge, our work represents the first attempt to integrate fishing ships trajectories derived from AIS data, environmental data and catch data for spatio-temporal prediction of CPUE – a challenging task
    • …
    corecore